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Abstract
Mutual information and swap operation in the two-qubit Heisenberg model
with the Dzyaloshinskii–Moriya (DM) anisotropic antisymmetric interaction
are investigated. It is found that the mutual information I of such a quantum
channel is sensitive to the initial conditions and declines with increase in
temperature. The DM interaction can lead to higher mutual information,
especially for the ferromagnetic case. The entanglement quality of input states
cannot enhance the mutual information of the quantum channel. When the DM
interaction is large, the mutual information will have the maximum value of 2
for a non-entangled input state, but it is 1 for a maximally entangled input state.
It is also shown that the swap operation can be implemented for some kinds
of DM coupling. The conditions of the DM coupling under which the swap
operation is feasible are established.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of quantum information processing has opened up an exciting new field in which
an intrinsic principle of quantum mechanics plays an important role [1]. For experimental
investigations of quantum computation and quantum communication, the thermal equilibrium
state in the Heisenberg model is one fundamental sort of mixed and entangled state. In some
schemes of teleportation using the Heisenberg model, half of two qubits can be teleported by
the sole two-qubit mixed state [2]. In other schemes, the entanglement of a special mixed
state, i.e. the Werner state, can be transferred through a pair of two-qubit mixed states [3].
Entanglement teleportation via thermal entangled states of a two-qubit Heisenberg XX chain
has also been reported [4]. Yeo et al [5] studied the influence of anisotropy and magnetic
field on quantum teleportation via a Heisenberg XY chain. We studied thermal entanglement
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and teleportation in a two-qubit Heisenberg chain with the Dzyaloshinskii–Moriya (DM)
anisotropic antisymmetric interaction [6]. However, to see the possible applications of the
Heisenberg model in quantum teleportation more clearly, the mutual information of the
quantum channel also needs to be analysed. Moreover, the minimal requirements for a
quantum computer (QC) architecture are the existence of fundamental quantum bits and the
ability to carry out qubit operations, such as the quantum exclusive-or gate (also known as
controlled-not (CNOT)), the Walsh–Hadamard gate and the swap gate, which is defined by
Uswap|�〉 ⊗ |�〉 = |�〉 ⊗ |�〉 [7]. The swap operation is a particularly intriguing process;
although it takes product states to product states, it is the most non-local operation and can
act as a double teleportation [8]. The swap gate itself is not universal; however, it can
be proved that the square root of a swap gate

√
Uswap is universal. A CNOT gate can be

constructed through a combination of single-qubit operations and
√

Uswap [9]. In the proposed
spin-based QC architectures, the exchange interaction between spins plays a fundamental role
in the establishment of two-qubit entanglement [10], while the Zeeman splitting, which is a
function of the external magnetic field, provides various single-qubit operations. The effects of
anisotropic magnetic fields on the interplay between Zeeman splitting and the swap operation
have been studied for the isotropic Heisenberg model [11, 12]. However, cases in which
the anisotropic interaction exists have seldom been considered. Though Burkard et al [13]
and Bonesteel et al [14] investigated the effect of spin–orbit effects on a quantum gate, the
appropriate magnitude of spin–orbit coupling for implementing the swap gate has yet to be
given.

In this paper, the mutual information and swap operation of the two-qubit Heisenberg
model in the presence of the DM anisotropic antisymmetric interaction are investigated. The
model will be given in section 2. In section 3, the mutual information will be investigated.
Considerations about the implementation of a swap gate based on the model will be given in
section 4. In section 5 a discussion concludes the paper.

2. The model and solutions

Now we consider the Heisenberg model with the Dzyaloshinskii–Moriya (DM) interaction

HDM = J

2

[
(σ1xσ2x + σ1yσ2y + σ1zσ2z)+ �D · (�σ1 × �σ2)

]
, (1)

where �D is the DM vector coupling. The DM anisotropic antisymmetric interaction arises
from spin–orbit coupling [15, 16]. Where J > 0 corresponds to the antiferromagnetic case and
J < 0 the ferromagnetic case; here we assume that J is a rational number. To see the effect of
the anisotropic parameter �D, we choose �D = D�z. Then the Hamiltonian HDM becomes

HDM = J [(1 + iD)σ1+σ2− + (1 − iD)σ1−σ2+] + J

2
σ1zσ2z . (2)

The eigenvalues and eigenvectors of HDM are given by

HDM |00〉 = J

2
|00〉 , HDM |11〉 = J

2
|11〉 ,

HDM |±〉 =
(

±J
√

1 + D2 − J

2

)
|±〉 ,

(3)

where |±〉 = 1/
√

2(|01〉±eiθ |10〉) and θ = arctan D. As thermal fluctuation is introduced into
the system, the state of a typical solid state system at thermal equilibrium (temperature T ) is

2
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ρ(T ) = e−H/(kT )/Z , where H is the Hamiltonian and Z = Tr e−H/(kT ) is the partition function.
In the standard basis {|11〉, |10〉, |01〉, |00〉}, the density matrix ρ(T ) can be expressed as

ρ(T ) = 1

Z

⎛

⎜
⎝

e−β J/2 0 0 0
0 eβ(J−δ)/2(1 + eβδ)/2 eiθeβ(J−δ)/2(1 − eβδ)/2 0
0 e−iθeβ(J−δ)/2(1 − eβδ)/2 eβ(J−δ)/2(1 + eβδ)/2 0
0 0 0 0

⎞

⎟
⎠ , (4)

where Z = 2e−β J/2[1 + eβ J cosh(βδ/2)], β = 1/(kT ) and δ = 2J
√

1 + D2. In the following
calculation, we will write the Boltzmann constant k = 1. Note that we are working in units
where D and J are dimensionless, and the entanglement of two qubits can be measured by the
concurrence C [17]. From [6], we know that when D = 0, i.e. δ = 2J , the critical temperature
above which the concurrence vanishes is Tc = 2J/ ln 3 for J > 0, but there is no entanglement
at any temperature for J < 0.

Similar to standard teleportation, entanglement teleportation for the mixed channel of an
input entangled state is destroyed and its replica state appears at the remote place after applying
a local measurement in the form of linear operators. When a two-qubit state ρin is teleported
via the channel, the output state ρout is [2]

ρout =
∑

i j

pi j(σi ⊗ σ j)ρin(σi ⊗ σ j ), (5)

with σi (i = 0, x, y, z) signifying the unit matrix I and three components of the Pauli matrix
�σ , respectively, pi j = Tr[Eiρ(T )]Tr[E jρ(T )],∑i j pi j = 1 and ρin = |ϕin〉〈ϕin|.

Here E0 = |�−〉〈�−|, E1 = |�−〉〈�−|, E2 = |�+〉〈�+|, E3 = |�+〉〈�+|, in which
|�±〉 = (1/

√
2)(|01〉 ± |10〉), |�±〉 = (1/

√
2)(|00〉 ± |11〉). Based on [17], we can get the

concurrence of the output state Cout.

3. Mutual information of the quantum channel

Compared with classical information theory, the mutual information I in the quantum
communication theory can imply the classical capacity of a quantum channel. For two-qubit
input states, a mutual information value of 2.0 means that the classical information carried by
the input states can be totally transmitted via the quantum channel. If the value of I is 0, it
means that the original classical information coded in the input states is totally destroyed after
quantum teleportation. If the value of I is 0 < I < 2.0, it means that the original classical
information coded in input states is partially destroyed after quantum teleportation. Here we
consider the following four input states:

∣∣ϕ1
in

〉 = cosω |00〉 + sinω |11〉 , ∣∣ϕ2
in

〉 = sinω |00〉 − cosω|11〉,
∣∣ϕ3

in

〉 = cos� |01〉 + sin� |10〉 , ∣∣ϕ4
in

〉 = sin� |01〉 − cos�|10〉. (6)

The parameters ω and � describe two sets of entangled states with different amplitudes. We
assume that the probability of the above state is the same, i.e., 1/4. Based on [18, 19], the
mutual information can be written as

I = 2 − 1

4

∑

l

S(ρl
out), l = 1, 2, 3, 4. (7)

In equation (7), the von Neumann entropy is S(ρ) = −tr(ρ log2 ρ). According to
equations (5)–(7), we can get the mutual information of the quantum channel.

The mutual information I is illustrated in figures 1–4. Figure 1 is a plot of the mutual
information I as a function of the input states (ω, �). From the figures, we can see that the
mutual information I is sensitive to the initial conditions and evolves with respect to both ω

3
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Figure 1. Mutual information I as a function of the input signal entangled states (ω, �) for J = 1
and T = J/(2 ln 3): (a) D = 0, (b) D = 5. T is plotted in units of the Boltzmann constant k, and
we work in units where D and J are dimensionless.

and �. There is a minimum mutual information of I = 1.55 when the input signal states
are maximally entangled with ω = � = (n + 1/4)π or (n + 3/4)π(0, 1, 2, 3, . . .), while
when the input signal states are not entangled, the mutual information I can reach a maximum
value, which is 1.65. It is interesting to note that the entanglement quality of the input states
cannot enhance the mutual information in entanglement teleportation. Comparing figure 1(a)
with 1(b), we can see that the introduction of the DM interaction can make mutual information
have the maximum value of 2 when the input states are not entangled; meanwhile, the DM
interaction weakens the mutual information when the input states are maximally entangled (for
example, D = 0, I = 1.55 for ω = � = π/4, but D = 5, I = 1.00). These results for
a maximally entangled input state are similar to the effects of DM interaction on the fidelity
obtained in [6], where by introducing the DM interaction, the output entanglement and fidelity
can be decreased for the antiferromagnetic (for J = 1) case.

Figure 2 demonstrates the dependence of mutual information on J and T for different
DM interactions when the input states are maximally entangled. It is shown that the mutual

4
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Figure 2. Mutual information I as a function of J and T for ω = � = π/4: (a) D = 0,
(b) D = 2. T is plotted in units of the Boltzmann constant k, and we work in units where D
and J are dimensionless.

Figure 3. Mutual information I as a function of T for J = 1: left panel D = 0; right panel
D = 2. The solid line labels maximally entangled input states when ω = � = (n + 1/4)π or
(n + 3/4)π (n = 0, 1, 2, . . .). The dotted line labels non-entangled input states when ω = � = nπ
or (n + 1/2)π (n = 0, 1, 2, . . .). T is plotted in units of the Boltzmann constant k, and we work in
units where D and J are dimensionless.

Figure 4. Mutual information I as a function of D for J = 1 and T = J /(2 ln 3). The solid line
labels maximally entangled input states when ω = � = (n+1/4)π or (n+3/4)π (n = 0, 1, 2, . . .).
The dotted line labels non-entangled input states when ω = � = nπ or (n + 1/2)π (n =
0, 1, 2, . . .). T is plotted in units of the Boltzmann constant k, and we work in units where D
and J are dimensionless.

information I of such a quantum channel declines (increases) with increase in the temperature
(spin–spin coupling J ). The DM interaction can lead to higher mutual information for the
ferromagnetic case, contrary to the antiferromagnetic case. These are same as the results in [6].
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So we can conclude that: in order to improve the entanglement teleportation fidelity and mutual
information I of ferromagnetic spin quantum channel, we can strengthen the DM interaction
for a non-entangled input state.

The mutual information I is plotted in figure 3 for varying input states ω and �. It can be
seen that the mutual information I of maximally entangled states (solid line) decreases more
rapidly than that of non-entangled input states (dotted line). From the left panel, we can see
that there is almost no difference in I between a maximally entangled input state and a non-
entangled input state when the temperature is very small for D = 0. However, the difference
becomes pronounced as the DM interaction is introduced, which can be seen from the right
panel. Combining the results obtained in [6], for an antiferromagnetic spin quantum channel,
we must input a maximally entangled state and weaken the DM interaction in order to get
higher entanglement teleportation fidelity and mutual information I .

We give a plot of I as a function of D in figure 4. As the DM interaction increases, the
mutual information I decreases to 1 for a maximally entangled input state, but it increases to
2 for a non-entangled input state when D is large. This is due to the fact that Cout = 0 when
D → ∞ for any input state. In other words, any one input state will be non-entangled when
D → ∞. Thus, the mutual information is 2 for a non-entangled input state, but it is 1 for a
maximally entangled input state. These results are similar to the results in [6] where the DM
interaction is very strong, the average fidelity of entanglement teleportation will approach a
fixed value that is the maximal one for classical communication.

4. Swap operation in this model

In order to investigate the effect of the DM interaction on the swap operation, the initial state is
chosen as a product state given by

ψ(0) = (α1 |1〉 + α2 |0〉)⊗ (β1 |1〉 + β2 |0〉) =
(
α1

α2

)
⊗

(
β1

β2

)
, (8)

and it then evolves under the Hamiltonian (1):

ψ(t) = e−iHDMtψ(0). (9)

If the wavefunction becomes (β1|1〉 + β2|0〉) ⊗ (α1|1〉 + α2|0〉) at some time, then the swap
operation has been achieved. From the above expressions, a swap is achieved by exchanging
the coefficients of the unpolarized state |01〉 and state |10〉. Expanding the initial state in the
basis of eigenstates of Hamiltonian (1), equation (9) becomes

|ψ(t)〉 = α2β2e−iJ t/2 |00〉 + α1β1e−iJ t/2 |11〉 +�+e−i(δ−J )t/2 |+〉 +�−ei(δ+J )t/2 |−〉 , (10)

with �± = √
2(α2β1 ± α1β2e−iθ )/2. If a two-qubit system is in a disentangled state, the

reduced density matrix of either spin is pure. The reduced density matrix of the first spin is
given by:

ρ1,11 = |b2|2 + |b4|2 , ρ1,00 = |b1|2 + |b3|2 ,
ρ1,10 = b∗

1b4 + b2b∗
3, ρ1,01 = b1b∗

4 + b∗
2b3,

(11)

with b1 = α2β2e−iJ t/2, b2 = α1β1e−iJ t/2, b3 = (�+e−i(δ−J )t/2 + �−ei(δ+J )t/2)/
√

2 and
b4 = (�+e−i(δ−J )t/2 −�−ei(δ+J )t/2)eiθ/

√
2. The eigenvalue equation for ρ1 is

τ 2 − (ρ11 + ρ00)τ + (ρ11ρ00 − |ρ10|2) = 0. (12)

To achieve a swap operation, we must have a product state of spin 1 and 2 evolve into a product
state, and the Schmidt number of the two-spin state cannot exceed 1, which means that only

6
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Table 1. The swap operation for
√

1 + D2 = 1, 5, 9, . . .; n = 0, 1, 2, . . ..

ψ(0) = (α1|1〉 + α2|0〉)⊗ (β1|1〉 + β2|0〉) =
(
α1

α2

)
⊗

(
β1

β2

)

t = π
2J t = 3π

2J t = 5π
2J t = 7π

2J

ψ(t) = ψ(t + 4nπ
J ) ψ(t) = ψ(t + 4nπ

J ) ψ(t) = ψ(t + 4nπ
J ) ψ(t) = ψ(t + 4nπ

J )

=
(

β1e−iπ/8

β2e−i[π/8+θ ]
) (

β1e−i3π/8

β2e−i[3π/8+θ ]
)

=
(

β1ei3π/8

β2ei[3π/8−θ ]
)

=
(

β1eiπ/8

β2ei[π/8−θ ]
)

⊗
(

α1e−iπ/8

α2e−i[π/8−θ ]
)

⊗
(

α1e−i3π/8

α2e−i[3π/8−θ ]
)

⊗
(

α1ei3π/8

α2ei[3π/8+θ ]
)

⊗
(

α1eiπ/8

α2ei[π/8+θ ]
)

Table 2. The swap operation for
√

1 + D2 = 3, 7, 11, . . .; n = 0, 1, 2, . . ..

ψ(0) = (α1|1〉 + α2|0〉)⊗ (β1|1〉 + β2|0〉) =
(
α1

α2

)
⊗

(
β1

β2

)

t = π
2J t = 3π

2J t = 5π
2J t = 7π

2J

ψ(t) = ψ(t + 4nπ
J ) ψ(t) = ψ(t + 4nπ

J ) ψ(t) = ψ(t + 4nπ
J ) ψ(t) = ψ(t + 4nπ

J )

=
(

β1e−iπ/8

β2e−iπ/8ei[π−θ ]
)

=
(

β1e−i3π/8

β2e−i3π/8ei[π−θ ]
)

=
(

β1ei3π/8

β2ei3π/8ei[π−θ ]
)

=
(

β1eiπ/8

β2eiπ/8ei[π−θ ]
)

⊗
(

α1e−iπ/8

α2e−iπ/8ei[π+θ ]
)

⊗
(

α1e−i3π/8

α2e−i3π/8ei[π+θ ]
)

⊗
(

α1ei3π/8

α2ei3π/8ei[π+θ ]
)

⊗
(

α1eiπ/8

α2eiπ/8ei[π+θ ]
)

one eigenvalue of the reduced density ρ1 is non-vanishing, so ρ11ρ00 − |ρ10|2 = 0. From
equation (11) we have:

ρ1,00ρ1,11 − ∣∣ρ1,10

∣∣2 = |b1b2 − b3b4|2
= ∣∣ 1

2 eiJ t{sin[δt] sin[θ ](α2
1β

2
2 − α2

2β
2
1 )+ 2α1α2β1β2(cos[2J t] − cos[δt])}

+ i{sin[δt] cos[θ ](α2
2β

2
1 + α2

1β
2
2 )− 2α1α2β1β2 sin[2J t]}∣∣2

. (13)

Now consider the value of t that makes equation (13) vanish. If t depends on the initial
state parameters α1, α2, β1 and β2, then for an unknown initial state the swap operation cannot
be realized. Hence t must be independent of the initial state parameters. Therefore we must
have δt = kπ and 2J t = mπ , where k,m = 0,±1,±2, . . .. Because δ = 2J

√
1 + D2,

there is a t that makes equation (13) vanish only when
√

1 + D2 is a rational number. After a
simple calculation, we know that only when

√
1 + D2 is an odd rational number can the swap

operation be achieved, otherwise the two-spin state return to the initial state with a phase shift.
Table 1 gives the swap operation for

√
1 + D2 = 1, 5, 9, . . ., and table 2 shows the results for√

1 + D2 = 3, 7, 11, . . .. We can see that the states of the two spins swap when t = kπ/(2J ),
(k is an odd rational number) with an additional phase shift, so that the swap operation is
achieved after the additional phase shift is corrected by a single-spin operation. It can also
be found that the additional phase depends on the evolution time and the value of

√
1 + D2.

Comparing table 2 with table 1 we can see that the additional phase is appended with eiπ for√
1 + D2 = 3, 7, 11, . . .. When D = 0 and θ = 0, which corresponds to

√
1 + D2 = 1 in

table 1, the model is reduced to a Heisenberg X X X one. From table 1, the swap operation is
achieved with an additional phase shift e−iπ/8. This is in accord with the results in [11, 12].

5. Conclusion

To summarize, we have investigated the mutual information and swap operation in a two-
qubit model in the presence of the DM anisotropic antisymmetric interaction. We find that
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the mutual information of such a quantum channel is sensitive to the initial conditions, and
the entanglement quality of the input states cannot enhance the mutual information of the
quantum channel. The DM interaction can lead to higher mutual information, especially for
the ferromagnetic case. The effects of DM interaction on entanglement teleportation fidelity
and mutual information are similar. A swap operation can be realized for some special DM
coupling with an additional phase shift. The additional phase shift depends on the evolution in
time and the DM coupling. If we take the DM coupling to be zero, our calculation accords with
the results of [20], in which the authors studied the swap gate from a geometric perspective.
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